The generator matrix 1 0 0 0 1 1 1 0 0 X^2 X^2 1 1 1 1 1 X^2+X X^2+X 1 1 1 X X^2 1 1 1 1 0 0 X^2+X 1 X^2 X^2 1 X^2+X 1 1 X X^2 0 1 X X^2+X 0 1 1 1 X^2+X 0 1 X 1 1 X^2 1 X 1 1 X^2 X X^2 1 X 1 1 X 0 X^2 1 X^2+X X^2+X 1 1 1 X 1 X^2 1 1 X^2+X 1 0 1 0 0 0 1 1 1 X^2 1 1 0 1 1 0 X X 1 X^2+1 X^2+X X^2 1 X^2 0 X^2+X+1 X+1 X+1 1 1 X^2 X 1 X X^2+X+1 1 X^2+X 0 1 0 1 X^2+X+1 X X^2 1 X X+1 X^2+1 1 1 X^2 1 X^2+X X^2+X+1 X 1 0 X^2 X^2+X 1 1 0 X 1 X^2+1 X^2+1 1 1 X^2+X 0 1 1 X^2+X X^2+X X^2 X^2 X^2+1 1 X X^2+X+1 X^2+X X^2 0 0 1 0 1 X^2 X^2+1 1 1 0 1 X^2 1 0 X^2+1 X^2 1 X X^2+X X^2+1 X 1 X X^2+X+1 X^2+1 0 X^2+1 X X^2+X+1 1 X^2+X X 1 X^2+X 0 X^2+1 X+1 X+1 1 X^2 X^2+1 1 X^2 X X+1 X+1 X^2+1 X+1 X^2+1 X^2+1 0 X^2 1 0 X^2+X 1 0 X+1 X^2+1 X+1 X X+1 1 X+1 X X^2+1 1 1 X^2+1 X^2 X^2+X 1 X X^2+X 1 X+1 1 1 0 1 X^2+1 0 0 0 1 X^2 0 X^2 X^2 1 1 X^2+1 1 1 X^2+1 X^2+1 X^2+X X+1 X^2 0 0 X+1 X 1 X+1 X^2+X X^2+X+1 1 1 X+1 X^2+X X X^2+X+1 0 1 0 X X^2+1 0 X^2+X+1 X^2+X+1 X^2 0 1 X X^2 X^2+X+1 X^2+X X^2+X X^2+X+1 X^2+X+1 X+1 X^2+1 X+1 1 X^2+X 0 X+1 X+1 X+1 X^2+X 1 X X^2 X^2+X X^2+1 X^2+X X X^2+X X+1 X^2+X+1 X^2+X+1 X^2+X+1 X^2+1 X^2+1 X+1 X^2+X+1 X^2+X X X 0 X^2+X generates a code of length 81 over Z2[X]/(X^3) who´s minimum homogenous weight is 75. Homogenous weight enumerator: w(x)=1x^0+224x^75+352x^76+446x^77+320x^78+426x^79+346x^80+394x^81+284x^82+276x^83+167x^84+210x^85+108x^86+144x^87+122x^88+106x^89+44x^90+44x^91+32x^92+24x^93+12x^94+6x^95+3x^96+4x^97+1x^100 The gray image is a linear code over GF(2) with n=324, k=12 and d=150. This code was found by Heurico 1.11 in 0.485 seconds.